logo

Chapter 2: Number System and Logic Functions

Computer Science - Class 11

No MCQ questions available for this chapter.

Chapter 2: Number System and Logic Functions

2.1 Number System and Conversion

2.1.1 Decimal, Binary, Octal, Hexadecimal Number System & Conversion

Number Systems:

  1. Decimal (Base 10):

    • Uses digits 0-9.
    • Each position represents a power of 10 (e.g., 345=3×102+4×101+5×100345 = 3 \times 10^2 + 4 \times 10^1 + 5 \times 10^0).
    • Conversion: To convert from decimal to binary, octal, or hexadecimal, divide the number by the base and record the remainders.
  2. Binary (Base 2):

    • Uses digits 0 and 1.
    • Each position represents a power of 2 (e.g., 1011=1×23+0×22+1×21+1×20=11101011 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 11_{10}).
    • Conversion: Decimal to binary involves dividing by 2 and noting remainders.
  3. Octal (Base 8):

    • Uses digits 0-7.
    • Each position represents a power of 8 (e.g., 27=2×81+7×80=231027 = 2 \times 8^1 + 7 \times 8^0 = 23_{10}).
    • Conversion: Decimal to octal is similar to binary but with base 8.
  4. Hexadecimal (Base 16):

    • Uses digits 0-9 and letters A-F (A=10, B=11, C=12, D=13, E=14, F=15).
    • Each position represents a power of 16 (e.g., 1A3=1×162+10×161+3×160=419101A3 = 1 \times 16^2 + 10 \times 16^1 + 3 \times 16^0 = 419_{10}).
    • Conversion: Decimal to hexadecimal involves dividing by 16.

2.1.2 Calculation in Binary: Addition and Subtraction

  • Binary Addition:

    • Rules:

      • 0+0=00 + 0 = 0
      • 0+1=10 + 1 = 1
      • 1+0=11 + 0 = 1
      • 1+1=01 + 1 = 0 (carry 1 to the next higher bit)
      • 1+1+1=11 + 1 + 1 = 1 (carry 1 to the next higher bit)
    • Example: 1011+11011011 + 1101

      sql
      1011 + 1101 ------ 11000 (binary) = 24 (decimal)
  • Binary Subtraction:

    • Rules:
      • 00=00 - 0 = 0
      • 10=11 - 0 = 1
      • 11=01 - 1 = 0
      • 010 - 1: requires borrowing.
    • Example: 110010101100 - 1010
      sql
      1100 - 1010 ------- 0100 (binary) = 4 (decimal)

2.1.3 One’s and Two’s Complement Methods of Binary Subtraction

  • One’s Complement:

    • Involves flipping all bits (0s become 1s and vice versa).
    • Example: One’s complement of 10101010 is 01010101.
  • Two’s Complement:

    • One’s complement plus one.
    • Used for binary subtraction.
    • Example: Two’s complement of 10101010:
      • One’s complement: 01010101
      • Adding one: 0101+0001=01100101 + 0001 = 0110 (Two’s complement = 01100110).
  • Subtraction Example:

    • To subtract ABA - B, convert BB to its two’s complement and add it to AA.
    • If there's a carry, discard it.

2.2 Logic Function and Boolean Algebra

2.2.1 Introduction to Boolean Algebra

  • Boolean Algebra:
    • A branch of algebra that involves binary variables and logical operations.
    • Fundamental to digital circuits and computer logic.
    • Uses two values: True (1) and False (0).

2.2.2 Introduction to Boolean Values, Truth Table, Boolean Expression, and Boolean Function

  • Boolean Values: Represent logical statements as either true (1) or false (0).

  • Truth Table: A table that lists all possible values of variables and the corresponding output of a Boolean expression.

    • Example: Truth table for AA AND BB:
      ABA AND B
      000
      010
      100
      111
  • Boolean Expression: Represents a logical relationship using variables and operators (AND, OR, NOT).

    • Example: A+BA + B represents AA OR BB.
  • Boolean Function: A function that takes Boolean inputs and produces a Boolean output.

2.2.3 Logic Gates

  • AND Gate:

    • Definition: Outputs true only if all inputs are true.
    • Truth Table:
      ABA AND B
      000
      010
      100
      111
    • Logic Symbol:
  • OR Gate:

    • Definition: Outputs true if at least one input is true.
    • Truth Table:
      ABA OR B
      000
      011
      101
      111
    • Logic Symbol:
  • NOT Gate:

    • Definition: Outputs the opposite of the input.
    • Truth Table:
      ANOT A
      01
      10
    • Logic Symbol:
  • NAND Gate:

    • Definition: Outputs false only if all inputs are true.
    • Truth Table:
      ABA NAND B
      001
      011
      101
      110
    • Logic Symbol:
  • NOR Gate:

    • Definition: Outputs true only if all inputs are false.
    • Truth Table:
      ABA NOR B
      001
      010
      100
      110
    • Logic Symbol:
  • XOR Gate:

    • Definition: Outputs true if the inputs are different.
    • Truth Table:
      ABA XOR B
      000
      011
      101
      110
    • Logic Symbol:
  • XNOR Gate:

    • Definition: Outputs true if the inputs are the same.
    • Truth Table:
      ABA XNOR B
      001
      010
      100
      111
    • Logic Symbol:

2.2.4 Laws of Boolean Algebra

  • Boolean Identities:
    • Complement Laws:
      • A+A=1A + \overline{A} = 1
      • AA=0A \cdot \overline{A} = 0
    • Identity Laws:
      • A+0=AA + 0 = A
      • A1=AA \cdot 1 = A
    • Commutative Laws:
      • A+B=B+AA + B = B + A
      • AB=BAA \cdot B = B \cdot A
    • Associative Laws:
      • A+(B+C)=(A+B)+CA + (B + C) = (A + B) + C
      • A(BC)=(AB)CA \cdot (B \cdot C) = (A \cdot B) \cdot C
    • Distributive Law:
      • A(B+C)=AB+ACA \cdot (B + C) = A \cdot B + A \cdot C

2.2.5 Statement and Verification of Laws of Boolean Algebra Using Truth Table

  • Verification:

    • Truth tables can be constructed for both sides of the equation for each law to confirm their validity.

    Example: Verification of the Commutative Law:

    • For A+BA + B and B+AB + A:

      ABA + BB + A
      0000
      0111
      1011
      1111
  • Both outputs match, proving A+B=B+AA + B = B + A.